Eighth Semester B.E. Degree Examination, Aug./Sept. 2020 Control Engineering

Time: 3 hrs.
Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Write the difference between open loop and closed loop control system and give one example for each.
(06 Marks)
b. What are the requirements of an ideal control system?
(06 Marks)
c. With block diagram, explain proportional plus integral plus differential (PID) controller and state its characteristics.
(08 Marks)
2 a. Derive the transfer function of an armature DC motor. The field current is maintained constant during operation. Assume the armature coil has a back emf. $e_{b}=K_{b} \frac{d \theta}{d t}$ and coil current produces torque $\mathrm{T}=\mathrm{K}_{\mathrm{m}} \tau_{\mathrm{a}}$ on the rotor, K_{b} and K_{m} are the back emf constant and motor torque constant respectively.
(10 Marks)
b. Obtain the differential equation for the mechanical system shown in Fig. Q2 (b) and draw the equivalent mechanical system. Also draw the analogous electrical network based on:
(i) Force-Voltage analogy (ii) Force-Current Analogy.
(10 Marks)

Fig. Q2 (b)
3 a. Reduce the block diagram shown in Fig. Q3 (a) and obtain transfer function $\frac{C(s)}{R(s)}$. (10 Marks)

Fig. Q3 (a)
b. Using Mason's Gain formula find the transfer function of signal flow graph shown in Fig. Q3 (b).
(10 Marks)

Fig. Q3 (b)

4 a. Obtain an expression for time response of the first order system subjected to unit step input.
(08 Marks)
b. A unity feedback system is characterized by an open loop transfer function $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+10)}$. Determine the system gain K , so that the system will have a damping ratio of 0.5 . For this value of K , find peak time, settling time and peak overshoot for a unit step input.
(08 Marks)
c. Examine the stability of system whose characteristic equation is $s^{4}+2 s^{3}+3 s^{2}+8 s+2=0$ using R-H criteria.
(04 Marks)

PART - B

5 a. Sketch polar plot for the transfer function $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{12}{\mathrm{~s}(\mathrm{~s}+1)(\mathrm{s}+2)}$.
(08 Marks)
b. Obtain Nyquist diagram for the system shown in Fig. Q5 (b) and ascertain its stability.
(12 Marks)

Fig. Q5 (b)
6 Sketch the Bode plot for a unity feed back system whose open loop transfer function is given by,
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{10}{\mathrm{~s}(1+\mathrm{s})(1+0.02 \mathrm{~s})}$.
From the Bode plot, determine
(i) Gain and phase cross over frequencies
(ii) Gain and phase margins
(iii) Comment on the stability of the closed loop system.
(20 Marks)
7 Sketch the root locus for a negative feedback system whose open loop transfer function is given by,
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+3)\left(\mathrm{s}^{2}+3 \mathrm{~s}+4.5\right)}$.
Comment on the stability of the system.
8 a. Write notes on: (i) Lead compensator (ii) Lag compensator.
(14 Marks)
b. Verify whether the following system is observable or not.

$$
\left\{\begin{array}{c}
\bullet \tag{06Marks}\\
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right\}=\left[\begin{array}{cc}
-5 & 4 \\
-6 & 5
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}+\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} u \text { and } y=\left\{\begin{array}{ll}
-2 & 3
\end{array}\right\} x
$$

